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The aim of the work is to develop algorithms and a set of programs for studying the dynamic characteristics of 
viscoelastic thin plates on a deformable base on which it is installed with several dynamic dampers. The theory of 
thin plates is used to obtain the equation of motion for the plate. The relationship between the efforts and the stirred 
plate obeys in the hereditary Boltzmann Voltaire integral. With this, a system of integro-differential equations is 
obtained which is solved by the method of complex amplitudes. As a result, a transcendental algebraic equation 
was obtained to determine the resonance frequencies, which is solved numerically by the Muller method. To 
determine the displacement of the point of the plate with periodic oscillations of the base of the plate, a linear 
inhomogeneous algebraic equation was obtained, which is solved by the Gauss method. The amplitude - frequency 
response of the midpoint of the plate is constructed with and without regard to the viscosity of the deformed 
element. The dependence of the stiffness of a deformed element on the frequency of external action is obtained to 
ensure optimal damping of vibrational vibrations of the plate. 

 
Key words: dynamic dampers, oscillations, viscoelastic plate, integro-differential equation, amplitude-frequency 
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1. Introduction 
 

The transformation in machines and mechanisms of some types of energy into others, the transformation 
of forms of movement, the implementation of work processes are inevitably associated with the emergence of 
variable forces that generate vibration [1, 2, 3]. It negatively affects the strength and reliability of the operation of 
machines, load-bearing structures and has a harmful effect on the physiological state of people [4, 5]. During the 
operation of electrical machines, vibrations are often observed during their operation [6]. Oscillations can be 
caused by disturbing forces of mechanical, electrical and aerodynamic origin. By balancing the rotor, improving 
the suspension and design of an electric machine, it is not always possible to reduce the level of vibrations to 
permissible norms, and therefore additional means have to be found to damp unwanted vibrations [7, 8]. In order 
to limit vibration in various fields of technology, there are requirements and standards for its regulation.  In most 
cases, the norms are established taking into account all the most important conditions and, since they cannot 
equally satisfy all the requirements, they are the result of a compromise solution [9, 10, 11, 12]. Dynamic vibration 
damping consists in attaching a system to the protected object, the reactions of which reduce the vibration range 
of the object at the points of connection of this system. 

If the frequency of the disturbing force changes little, then one of the most promising, still ways to reduce 
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2  Dynamic vibration extinguished on a viscously elastic base 

the level of vibrations is the use of dynamic absorbers [13, 14]. A dynamic damper is schematically a mass 
suspended by a spring and having the ability to move in one or more directions. It is known that the use of a damper 
tuned to the frequency of the disturbing force makes it possible to stop the movement of a body with one degree 
of freedom at this frequency and to reduce the level of vibrations at frequencies close to it [15, 16, 17]. Currently, 
the simplest, most affordable and widespread vibration isolation means are elastic elements and dynamic vibration 
dampers. At sufficiently high frequencies, the elastic elements provide reflection of most of the vibrational energy 
back to the source, and the better, the lower their rigidity. In the low frequency range, the requirements for the 
stiffness value are, as a rule, completely different. They are determined by the static load, its changes when tilting, 
as well as inertial forces during acceleration and deceleration on moving objects, impacts, centering of the 
mechanism and other operating conditions [18, 19, 20].  

In this paper, we consider the problem of reducing the vibration level of a plate on a viscoelastic foundation 
using dynamic vibration dampers. 
 
2. Formulation of the problem  
 
 Consider the vibrations of a rectangular plate with length l and width b, contacting its entire surface 
with an elastic base and pivotally supported along the longitudinal edges (Fig.1). We will take the middle plane 
of the plate as the coordinate plane ,xy  and direct the z  axis along the normal to this plane. Let the movement 
of the base under a kinematic perturbation be carried out with frequency and amplitude A , i.e. 

 
  ( ) sink pt A ptω = . (2.1) 

 
Let us place a sufficient number of small elastically attached masses of absorbers above the plate so that 

their action on it can be considered distributed (Fig.1). 
 

 
 

Fig.1. The number of small elastically attached masses of absorbers above the plate. 
 

 In the resulting oscillatory system, one can consider a conventional layer of dynamic absorbers, each 
element of which performs independent movements orthogonally to the middle surface of the plate. The 
curved surface of a section that is sufficiently distant from the transverse edges of the long plate ( ).a 4 0b>  
can be considered cylindrical [6]. Then mentally cutting out an elementary strip from the plate in the direction 
of the x  axis, the latter can be considered as a beam of length l  on a viscoelastic base. 

The integro-differential equations of small vibrations of the plate near the position of static equilibrium 
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for deflections w  and displacements of the absorber layer have the form 0W  [18] 
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where ρ  and gρ  – density of the plate material and layer of absorbers, respectively;  h and  gh  – thickness of 
the plate and layer of absorber, respectively; a0c and g0c  – are the stiffness coefficients of the base of the plate 
and the layer of absorber, respectively. 
 The bending moment M  and the shearing force Q  in the plate section perpendicular to the x axis are 
defined as [3, 19, 20] 
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where 0Е  – instant modulus of elasticity of the plate, 0h  – plate thickness, 0v  – Poisson's ratio of the plate, 

( )f t  – time derivative. Then the boundary conditions at the longitudinal edges of the plate are: 
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where 0C  – instant stiffness coefficient, ( ) cR t − τ  – relaxation core. 
 Thus, we have obtained a system of integro-differential equations (2.2) and the corresponding 
boundary conditions (2.4).  
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3. Solution methods 
 
 Separating the variables according to the Fourier method for the steady-state vibration mode, we 
represent the plate deflections and the displacements of the absorber layer in the form of products of two 
functions 

 
  ( ) ( ) ( ) ( ),, ,iwt iwt

0 0w x t W x e w x t W x e− −= =  (3.1) 
 

where ( )W x  and ( )0W x  – complex values of amplitude deflections and displacements, respectively,  
w  – vibration frequency. 
 After substituting them into the differential equations of oscillations we get: 
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where Eqs (3.4) are cosine and sine of Fourier transform, respectively and Rω  – is the actual value. The final 
resolving equation of plate vibrations can be represented as 
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here 0ω  – quencher layer partial frequency. 
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It is convenient to represent the solution of Eq.(3.5) in the Krylov functions [1], which form a system of 
particular solutions with the unit matrix of the initial boundary conditions, which are taken in the form  
 
  ( ) ( ) ( ) ( ). ch cos , . sh sin ,1 2U x 0 5 x x U x 0 5 x x= χ + χ = χ + χ  (3.6) 
 
  ( ) ( ) ( ) ( ). ch cos , . sh sin ,3 4U x 0 5 x x U x 0 5 x x= χ − χ = χ − χ  (3.7) 
 
moreover 
 
  ' ' ' ', , , .1 4 2 1 3 2 4 3U U U U U U U U= χ = χ = χ = χ  
 
Introducing constants 
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the general solution of Eq.(3.4) can be represented as 
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Here ( ) ( ),С S

c0 с0Γ ω Γ ω  are defined as Eq.(3.3). 
In this case, the shape of the plate deflections is 
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after which 
 

  
( ) ( ) ( ) ( )

( )

. ch sin sh cos sh sin

ch cos sh sin

1

2

0 5RA 1 p P a 1 p P
A

p 1 2P

=  − χα χα − χα χ − + χα − χα +

− − χα χα + χα χα

 (3.17) 

 
where  
 
  ( ) ( ). ch cos ch sin sh cos sh sin2A 0 5 1 2P 2P = − χα χα + χα χα − χα χα + χα χα  . (3.18) 

 
Introducing dimensionless parameters 
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then for the dimensionless stiffness 0c of absorbers, taking into account expression (3.4), we have  
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Complete damping of forced vibrations of the longitudinal edges of the plate will be provided   1A 0= , which 
leads to the equation 
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where ( ) ( ) ( ) ( ), , , c s c s

C с c сГ Г Г Гχ χ χ χ  are defined similarly Eq.(3.2). For given dimensionless instantaneous 
stiffnesses 0С  of viscoelastic supports and viscoelastic foundation 0с , the complex parameter is determined 
from the solution of the equation by a complex output parameter χ .  
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4. Numerical results  
 

As the initial data, you should specify the radii (large and small), the height and thickness of the shell, 
the angle of the half of the truncated cone, the modulus of elasticity, Poisson's ratio, the parameters of the 
relaxation kernel of the material, and the geometric and mechanical parameters of the ribs. As the relaxation 
kernel of a viscoelastic material, we take the three-parameter kernel ( ) ( ) ( )1tR t Ae t− −α−β= . Rzhanitsyn-

Koltunova [21, 22, 23, 24], which has a weak singularity. Here , ,A β α  are – material parameters. We take the 
parameter values in the form:  

 

  
( ). , . , . , , . ,

 and . .

0 0

0

A 0 048 0 05 0 1 C 50 c 25 2 959

a 2 m 0 025

α= β = α = = = χ =

= =
 (4.1) 

 

 
 

Fig.2. The amplitude and frequency characteristics of the point  ax
2

 = 
 

 at the frequency of vibration loads. 

 

 
 

Fig.3. Results of the corresponding calculations. 
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 Figure 2 shows the amplitude and frequency characteristics of the point  ax
2

 = 
 

 at the frequency of 

vibration loads (1 – taking into account the viscosity of the deformed element, 2 – without taking into account 
the viscosity). 
 The figure shows that taking into account the viscous property of the deformed element (spring) 
reduces the displacement amplitudes to %15 . For the given dimensionless stiffness of elastic supports C  and 
an elastic foundation C , the parameter of the plate χ  can be found from the solution of Eq.(3.2) [25, 26]. 
Further, choosing the ratio of the masses 0m  of the absorbers and the plate, the required dimensionless stiffness 

0c  of the absorbers is determined by formula (3.5), depending on the specific dimensionless frequency of 
vibration of the base ω . 
 The results of the corresponding calculations are presented in the graphs in Fig.3. Thus, the correctness 
of the calculation of deformations and stresses in technical structures arising from bending vibrations depends 
on the assessment of the effect of small masses of absorbers on the vibration modes of the plate. Dependencies 

0c  from 2ω  for C 100=  and ( ).c 50 2 959= χ =  at ( ) ( ) ( ) ( ). , . , . , .0 0 025 1 0 050 2 0 075 3 0m 100 4= . 
 The graphs presented can be used to adjust the dynamic masses of the absorbers, at which the 
longitudinal edges of the plate remain stationary. 
 If they are present, it is possible to determine their corresponding stiffness from a given frequency of 
kinematic disturbance at a selected mass of absorbers. 
 
5. Conclusions  
 
The ratio of the masses of the absorbers and the plate, the required dimensionless stiffness of the absorbers, 
depending on the specific vibration frequency of the base, are determined. The amplitude – frequency 
characteristics of the midpoint of the plate are constructed with and without regard to the viscosity of the deformed 
element. To ensure optimal damping of vibrations of the plate, the dependence of the stiffness of the deformed 
element on the frequency of the external action is obtained. 
1. It is necessary to ensure, at high viscosity, that the resonant frequencies are very close to unity (the first natural 

frequency of the mechanical system), the dimensionless frequency at which it is necessary to damp the 
displacement amplitudes of the oscillatory mechanical system. 

2. The most effective (in terms of optimal damping) is the use of two dynamic dampers for vertical movement. 
3. To achieve optimal damping, one of the dampers must be installed at the center of gravity. The second damper 

must be removed as far as possible from the first. It can be seen that taking into account the viscous 
properties of the deformed element (spring) reduces the displacement amplitudes to %15 . 

 
Nomenclature  
 
 A  – frequency and amplitude 
  ,a0 g0c c  – instants, the stiffness coefficients of the base of the plate and the layer of absorbers, respectively; 
  0Е  – instant modulus of elasticity of the plate 
 ( )f t  – arbitrary function of time 
 , gh h  – thickness of the plate and layer of absorbers, respectively 
 0h  – plate thickness 
 M  – bending moment 
 Q  – shearing force 
 ( )cR t − τ  – relaxation core 
  w  – static equilibrium positions for deflections  
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 0W  – displacement of the absorber layer  
 ( )W x , ( )0W x  – complex values of amplitude deflections and displacements, respectively 
 , ,x y z  – coordinate planes  
 0v  – Poisson's ratio of the plate 
 , gρ ρ  – density of the plate material and layer of absorbers, respectively 
 ω  – vibration frequency 
 rω  – actual value 
 0ω  – partial frequency of the absorber layer  
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